Close banner

2022-09-24 01:36:14 By : Ms. Daisy Dai

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nature Reviews Chemistry (2022 )Cite this article

Endergonic photocatalysis is the use of light to perform catalytic reactions that are thermodynamically unfavourable. While photocatalysis has become a powerful tool in facilitating chemical transformations, the light-energy efficiency of these processes has not gathered much attention. Exergonic photocatalysis does not take full advantage of the light energy input, producing low-energy products and heat, whereas endergonic photocatalysis incorporates a portion of the photon energy into the reaction, yielding products that are higher in free energy than the reactants. Such processes can enable catalytic, atom-economic syntheses of reactive compounds from bench-stable materials. With respect to environmental friendliness and carbon neutrality, endergonic photocatalysis is also of interest to large-scale industrial manufacturing, where better energy efficiency, less waste and value addition are highly sought. We therefore assess here the thermochemistry of several classes of reported photocatalytic transformations to showcase current advances in endergonic photocatalysis and point to their industrial potential.

This is a preview of subscription content, access via your institution

Get full journal access for 1 year

All prices are NET prices. VAT will be added later in the checkout. Tax calculation will be finalised during checkout.

Get time limited or full article access on ReadCube.

All prices are NET prices.

Roth, H. The beginnings of organic photochemistry. Angew. Chem. Int. Ed. Engl. 28, 1193–1207 (1989).

Osterloh, F. E. Photocatalysis versus photosynthesis: a sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Lett. 2, 445–453 (2017).

Astumian, R. D. Optical vs. chemical driving for molecular machines. Faraday Discuss. 195, 583–597 (2016).

Kathan, M. & Hecht, S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chem. Soc. Rev. 46, 5536–5550 (2017).

Kathan, M. et al. Light-driven molecular trap enables bidirectional manipulation of dynamic covalent systems. Nat. Chem. 10, 1031–1036 (2018).

Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–244 (2018).

Plaza, M., Großkopf, J., Breitenlechner, S., Bannwarth, C. & Bach, T. Photochemical deracemization of primary allene amides by triplet energy transfer: a combined synthetic and theoretical study. J. Am. Chem. Soc. 143, 11209–11217 (2021).

Zhang, C. et al. Catalytic α‑deracemization of ketones enabled by photoredox deprotonation and enantioselective protonation. J. Am. Chem. Soc. 143, 13393–13400 (2021).

Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).

Großkopf, J. et al. Photochemical deracemization at sp3‑hybridized carbon centers via a reversible hydrogen atom transfer. J. Am. Chem. Soc. 143, 21241–21245 (2021).

Wang, Y., Carder, H. M. & Wendlandt, A. E. Synthesis of rare sugar isomers through site-selective epimerization. Nature 578, 403–408 (2020).

Zhang, Z. & Hu, X. Visible-light-driven catalytic deracemization of secondary alcohols. Angew. Chem. Int. Ed. 60, 22833–22838 (2021).

Singh, K., Staig, S. J. & Weaver, J. D. Facile synthesis of Z-alkenes via uphill catalysis. J. Am. Chem. Soc. 136, 5275–5278 (2014).

Singh, A., Fennell, C. J. & Weaver, J. D. Photocatalyst size controls electron and energy transfer: selective E/Z isomer synthesis via C–F alkenylation. Chem. Sci. 7, 6796–6802 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Metternich, J. B. & Gilmour, R. A bio-inspired, catalytic E→Z isomerization of activated olefins. J. Am. Chem. Soc. 137, 11254–11257 (2015).

Molloy, J. J., Metternich, J. B., Daniliuc, C. G., Watson, A. J. B. & Gilmour, B. Contra-thermodynamic, photocatalytic E→Z isomerization of styrenyl boron species: vectors to facilitate exploration of two-dimensional chemical space. Angew. Chem. Int. Ed. 57, 3168–3172 (2018).

Molloy, J. J. et al. Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science 369, 302–306 (2020).

Neveselý, T., Wienhold, M., Molloy, J. J. & Gilmour, R. Advances in the E→Z isomerization of alkenes using small molecule photocatalysts. Chem. Rev. 122, 2650–2694 (2022).

Brégent, T., Bouillon, J.-P. & Poisson, T. Copper-photocatalyzed contra-thermodynamic isomerization of polarized alkenes. Org. Lett. 22, 7688–7693 (2020).

Ota, E., Wang, H., Frye, N. L. & Knowles, R. R. A redox strategy for light-driven, out-of-equilibrium isomerizations and application to catalytic C–C bond cleavage reactions. J. Am. Chem. Soc. 141, 1457–1462 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Yayla, H. G., Wang, H., Tarantino, K. T., Orbe, H. S. & Knowles, R. R. Catalytic ring-opening of cyclic alcohols enabled by PCET activation of strong O–H bonds. J. Am. Chem. Soc. 138, 10794–10797 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Trost, B. M. & Livingston, R. C. Two-metal catalyst system for redox isomerization of propargyl alcohols to enals and enones. J. Am. Chem. Soc. 117, 9586–9587 (1995).

Li, H. & Mazet, C. Iridium-catalyzed selective isomerization of primary allylic alcohols. Acc. Chem. Res. 49, 1232–1241 (2016).

Crossley, S. W. M., Barabé, F. & Shenvi, R. A. Simple, chemoselective, catalytic olefin isomerization. J. Am. Chem. Soc. 136, 16788–16791 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Molloy, J. J., Morack, T. & Gilmour, R. Positional and geometrical isomerization of alkenes: the pinnacle of atom economy. Angew. Chem. Int. Ed. 58, 13654–13664 (2019).

Zhao, K. & Knowles, R. R. Contra-thermodynamic positional isomerization of olefins. J. Am. Chem. Soc. 144, 137–144 (2022).

Occhialini, G., Palani, V. & Wendlandt, A. E. Catalytic, contra-thermodynamic positional alkene isomerization. J. Am. Chem. Soc. 144, 145–152 (2022).

Morack, T., Onneken, C., Nakakohara, H., Mück-Lichtenfeld, C. & Gilmour, R. Enantiodivergent prenylation via deconjugative isomerization. ACS Catal. 11, 11929–11937 (2021).

Zhu, M., Zheng, C., Zhang, X. & You, S.-L. Synthesis of cyclobutane-fused angular tetracyclic spiroindolines via visible-light-promoted intramolecular dearomatization of indole derivatives. J. Am. Chem. Soc. 141, 2636–2644 (2019).

Zhu, M., Zhang, X., Zheng, C. & You, S.-L. Visible-light-induced dearomatization via [2+2] cycloaddition or 1,5-hydrogen atom transfer: divergent reaction pathways of transient diradicals. ACS Catal. 10, 12618–12626 (2020).

Zhu, M., Xu, H., Zhang, X., Zheng, C. & You, S.-L. Visible-light-induced intramolecular double dearomative cycloaddition of arenes. Angew. Chem. Int. Ed. 60, 7036–7040 (2021).

Ma, J. et al. Direct dearomatization of pyridines via an energy-transfer-catalyzed intramolecular [4+2] cycloaddition. Chem 5, 2854–2864 (2019).

Ma, J. et al. Photochemical intermolecular dearomative cycloaddition of bicyclic azaarenes with alkenes. Science 371, 1338–1345 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Filippo, M. D., Trujillo, C., Sánchez-Sanz, G., Batsanov, A. S. & Baumann, M. Discovery of a photochemical cascade process by flow-based interception of isomerizing alkenes. Chem. Sci. 12, 9895–9901 (2021).

PubMed  PubMed Central  Google Scholar 

Zhang, Z. et al. Photocatalytic intramolecular [2 + 2] cycloaddition of indole derivatives via energy transfer: a method for late-stage skeletal transformation. ACS Catal. 10, 10149–10156 (2020).

Park, Y. et al. Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen. Nat. Chem. 13, 969–976 (2021).

Chatterjee, A. & König, B. Birch-type photoreduction of arenes and heteroarenes by sensitized electron transfer. Angew. Chem. Int. Ed. 58, 14289–14294 (2019).

Cole, J. P. et al. Organocatalyzed Birch reduction driven by visible light. J. Am. Chem. Soc. 142, 13573–13581 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Joshi, D. K., Sutton, J. W., Carver, S. & Blanchard, J. P. Experiences with commercial production scale operation of dissolving metal reduction using lithium metal and liquid ammonia. Org. Process. Res. Dev. 9, 997–1002 (2005).

Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Poplata, S., Tröster, A., Zou, Y.-Q. & Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Sarkar, D., Bera, N. & Ghosh, S. [2+2] photochemical cycloaddition in organic synthesis. Eur. J. Org. Chem. 2020, 1310–1326 (2020).

Sicignano, M., Rodríguez, R. I. & Alemán, J. Recent visible light and metal free strategies in [2+2] and [4+2] photocycloadditions. Eur. J. Org. Chem. 2021, 3303–3321 (2021).

Huang, X. et al. Direct visible-light-excited asymmetric Lewis acid catalysis of intermolecular [2+2] photocycloadditions. J. Am. Chem. Soc. 139, 9120–9123 (2017).

Jung, H. et al. Understanding the mechanism of direct visible-light-activated [2+2] cycloadditions mediated by Rh and Ir photocatalysts: combined computational and spectroscopic studies. Chem. Sci. 12, 9673–9681 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Zheng, J., Dong, X. & Yoon, T. P. Divergent photocatalytic reactions of α-ketoesters under triplet sensitization and photoredox conditions. Org. Lett. 22, 6520–6525 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Murray, P. R. D. et al. Intermolecular crossed [2+2] cycloaddition promoted by visible-light triplet photosensitization: expedient access to polysubstituted 2-oxaspiro[3.3]heptanes. J. Am. Chem. Soc. 143, 4055–4063 (2021).

Singh, K., Trinh, W. & Weaver, J. D. An elusive thermal [2+2] cycloaddition driven by visible light photocatalysis: tapping into strain to access C2-symmetric tricyclic rings. Org. Biomol. Chem. 17, 1854–1861 (2019).

West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

Zhou, M.-J., Zhang, L., Liu, G., Xu, C. & Huang, Z. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. J. Am. Chem. Soc. 143, 16470–16485 (2021).

Fuse, H., Kojima, M., Mitsunuma, H. & Kanai, M. Acceptorless dehydrogenation of hydrocarbons by noble-metal-free hybrid catalyst system. Org. Lett. 20, 2042–2045 (2018).

Fuse, H., Mitsunuma, H. & Kanai, M. Catalytic acceptorless dehydrogenation of aliphatic alcohols. J. Am. Chem. Soc. 142, 4493–4499 (2020).

Cheng, E. et al. Isobutane dehydrogenation over bulk and supported molybdenum sulfide catalysts. Ind. Eng. Chem. Res. 59, 1113–1122 (2020).

Li, C. & Wang, G. Dehydrogenation of light alkanes to mono-olefins. Chem. Soc. Rev. 50, 4359–4381 (2021).

Bender, M. An overview of industrial processes for the production of olefins — C4 hydrocarbons. ChemBioEng Rev. 1, 136–147 (2014).

Xiang, M. et al. Activation of C–H bonds through oxidant-free photoredox catalysis: cross-coupling hydrogen-evolution transformation of isochromans and β-keto esters. Chem. Eur. J. 21, 18080–18084 (2015).

Zheng, Y.-W. et al. Photocatalytic hydrogen-evolution cross-couplings: benzene C–H amination and hydroxylation. J. Am. Chem. Soc. 138, 10080–10083 (2016).

Zheng, Y.-W. et al. Benzene C–H etherification via photocatalytic hydrogen-evolution cross-coupling reaction. Org. Lett. 19, 2206–2209 (2017).

Zhang, G. et al. Visible-light induced oxidant-free oxidative cross-coupling for constructing allylic sulfones from olefins and sulfinic acids. Chem. Commun. 52, 10407–10410 (2016).

Zhang, G. et al. Anti-Markovnikov oxidation of β-alkyl styrenes with H2O as the terminal oxidant. J. Am. Chem. Soc. 138, 12037–12040 (2016).

Yi, H. et al. Photocatalytic dehydrogenative cross-coupling of alkenes with alcohols or azoles without external oxidant. Angew. Chem. Int. Ed. 56, 1120–1124 (2017).

McManus, J. B., Griffin, J. D., White, A. R. & Nicewicz, D. A. Homobenzylic oxygenation enabled by dual organic photoredox and cobalt catalysis. J. Am. Chem. Soc. 142, 10325–10330 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Kawasaki, T., Ishida, N. & Murakami, M. Dehydrogenative coupling of benzylic and aldehydic C–H bonds. J. Am. Chem. Soc. 142, 3366–3370 (2020).

Cao, H. et al. Photoinduced site-selective alkenylation of alkanes and aldehydes with aryl alkenes. Nat. Commun. 11, 1956 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Masuda, Y., Ishida, N. & Murakami, M. Light-driven carboxylation of o-alkylphenyl ketones with CO2. J. Am. Chem. Soc. 137, 14063–14066 (2015).

Ishida, N., Masuda, Y., Uemoto, S. & Murakami, M. A light/ketone/copper system for carboxylation of allylic C–H bonds of alkenes with CO2. Chem. Eur. J. 22, 6524–6527 (2016).

Ishida, N., Masuda, Y., Imamura, Y., Yamazaki, K. & Murakami, M. Carboxylation of benzylic and aliphatic C–H bonds with CO2 induced by light/ketone/nickel. J. Am. Chem. Soc. 141, 19611–19615 (2019).

Seo, H., Katcher, M. H. & Jamison, T. F. Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nat. Chem. 9, 453–456 (2017).

Meng, Q.-Y., Schirmer, T. E., Berger, A. L., Donabauer, K. & König, B. Photocarboxylation of benzylic C–H bonds. J. Am. Chem. Soc. 141, 11393–11397 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Sarver, P. J., Bissonnette, N. B. & Macmillan, D. W. C. Decatungstate-catalyzed C(sp3)–H sulfinylation: rapid access to diverse organosulfur functionality. J. Am. Chem. Soc. 143, 9737–9743 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Bronner, S. M. & Grubbs, R. H. Formal anti-Markovnikov hydroamination of terminal olefins. Chem. Sci. 5, 101–106 (2014).

Huang, L., Arndt, M., Gooßen, K., Heydt, H. & Gooßen, L. J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 115, 2596–2697 (2015).

Zhu, Q., Graff, D. E. & Knowles, R. R. Intermolecular anti-Markovnikov hydroamination of unactivated alkenes with sulfonamides enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 140, 741–747 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Miller, D. C. et al. Anti-Markovnikov hydroamination of unactivated alkenes with primary alkyl amines. J. Am. Chem. Soc. 141, 16590–16594 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Chinn, A. J., Sedillo, K. & Doyle, A. G. Phosphine/photoredox catalyzed anti-Markovnikov hydroamination of olefins with primary sulfonamides via α‑scission from phosphoranyl radicals. J. Am. Chem. Soc. 143, 18331–18338 (2021).

Musacchio, A. J. et al. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science 355, 727–730 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Park, S., Jeong, J., Fujita, K., Yamamoto, A. & Yoshida, H. Anti-Markovnikov hydroamination of alkenes with aqueous ammonia by metal-loaded titanium oxide photocatalyst. J. Am. Chem. Soc. 142, 12708–12714 (2020).

Iwamoto, T., Hosokawa, A. & Nakamura, M. Endergonic addition of N-methylamines to aromatic ketones driven by photochemical offset of the entropic cost. Chem. Commun. 55, 11683–11686 (2019).

Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

Strunk, J. (ed.) Heterogeneous Photocatalysis: From Fundamentals To Applications In Energy Conversion And Depollution (Wiley, 2021).

Cai, T. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).

Patil, B. S. et al. Nitrogen fixation. In Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2017).

Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

Tanabe, Y. & Nishibayashi, Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem. Soc. Rev. 50, 5201–5242 (2021).

Kuriyama, S. & Nishibayashi, Y. Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. Tetrahedron 83, 131986 (2021).

Huang, R. et al. Recent advances in photocatalytic nitrogen fixation: from active sites to ammonia quantification methods. RSC Adv. 11, 14844–14861 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Kim, S., Loose, F. & Chirik, P. J. Beyond ammonia: nitrogen–element bond forming reactions with coordinated dinitrogen. Chem. Rev. 120, 5637–5681 (2020).

Sovacool, B. K., Griffiths, S., Kim, J. & Bazilian, M. Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew. Sust. Energ. Rev. 141, 110759 (2021).

Frisch, M. J. et al. Gaussian 16 Revision C.01 (Gaussian, Inc., 2019).

Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1989).

Chai, J. D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

McLean, A. D. & Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72, 5639–5648 (1980).

Blaudeau, J.-P., McGrath, M. P., Curtiss, L. A. & Radom, L. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys. 107, 5016–5021 (1997).

Wachters, A. J. H. Gaussian basis set for molecular wavefunctions containing third-row atoms. J. Chem. Phys. 52, 1033–1036 (1970).

Hay, P. J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms. J. Chem. Phys. 66, 4377–4384 (1977).

Raghavachari, K. & Trucks, G. W. Highly correlated systems. Excitation energies of first row transition metals Sc–Cu. J. Chem. Phys. 91, 1062–1065 (1989).

Binning, R. C. & Curtiss, L. A. Compact contracted basis sets for third-row atoms: Ga–Kr. J. Comp. Chem. 11, 1206–1216 (1990).

McGrath, M. P. & Radom, L. Extension of Gaussian-1 (G1) theory to bromine-containing molecules. J. Chem. Phys. 94, 511–516 (1991).

Curtiss, L. A. et al. Extension of Gaussian-2 theory to molecules containing third-row atoms Ga–Kr. J. Chem. Phys. 103, 6104–6113 (1995).

Clark, T., Chandrasekhar, J., Spitznagel, G. W. & Schleyer, P. V. R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J. Comp. Chem. 4, 294–301 (1983).

Frisch, M. J., Pople, J. A. & Binkley, J. S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984).

Wiberg, K. B. The C7–C10 cycloalkanes revisited. J. Org. Chem. 68, 9322–9329 (2003).

Neuenschwander, U. & Hermans, I. The conformations of cyclooctene: consequences for epoxidation chemistry. J. Org. Chem. 76, 10236–10240 (2011).

Smithson, T. L., Ibrahim, N. & Wieser, H. Methylenecyclohexenes: inversion barriers from the far-infrared spectra. Can. J. Chem. 61, 442–453 (1983).

Lima, C. F. R. A. C. et al. The role of aromatic interactions in the structure and energetics of benzyl ketones. Phys. Chem. Chem. Phys. 12, 11228–11237 (2010).

Nyden, M. R. & Petersson, G. A. Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. J. Chem. Phys. 75, 1843–1862 (1981).

Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A. & Shirley, W. A. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89, 2193–2218 (1988).

Petersson, G. A. & Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991).

Petersson, G. A., Tensfeldt, T. & Montgomery, J. A. Jr A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J. Chem. Phys. 94, 6091–6101 (1991).

Montgomery, J. A. Jr, Ochterski, J. W. & Petersson, G. A. A complete basis set model chemistry. IV. An improved atomic pair natural orbital method. J. Chem. Phys. 101, 5900–5909 (1994).

Montgomery, J. A. Jr & Frisch, M. J. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 110, 2822–2827 (1999).

Montgomery, J. A. Jr, Frisch, M. J. & Ochterski, J. W. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 112, 6532–6542 (2000).

Johnson, R. D. III NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101, Release 21, accessed August 2020; http://cccbdb.nist.gov/.

We thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; grant TRR 325-444632635) for funding support. H.W. thanks N. Y. Shin (Princeton University) for a discussion regarding deracemization.

Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany

Huaiju Wang, Ya-Ming Tian & Burkhard König

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

All authors contributed to the conception and writing process of the manuscript. H.W. performed the computational studies.

Correspondence to Burkhard König.

The authors declare no competing interests.

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to peer review of this work.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Wang, H., Tian, YM. & König, B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat Rev Chem (2022). https://doi.org/10.1038/s41570-022-00421-6

DOI: https://doi.org/10.1038/s41570-022-00421-6

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Nature Reviews Chemistry (Nat Rev Chem) ISSN 2397-3358 (online)

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.